Jumat, 08 April 2016

Induksi Elektromagnetiik Fisika



KATA PENGANTAR

Bismillahirrahmanirrahim

Assalamualaikum Wr. Wb.
Dengan penuh rasa ikhlas penulis mengucapkan Alhamdulillah sebagai wujud syukur kehadirat yang Maha Agung Allah SWT yang telah memberikan penulis petunjuk, kekuatan, dan kesabaran sehingga penulis dapat menyelesaikanmakalah ini.Judul makalah ini yaitu: “pembahasan tentang INDUKSI ELEKTROMAGNETIK”

Pembuatan makalah ini merupakan suatu syarat untuk menambah pengetahuan tentang induksi elektromagnetik danMelengkapi Tugas Dalam Proses pembelajaranfisika.

Akhir kata penulis bersujud pada Allah SWT. Atas segala rahmat dan karunia-Nya yang telah diberikan kepada penulis. Semoga penulis dapat memanfaatkan ilmu yang telah diperoleh untuk kebaikan. Amin-Amin Ya Rabbal Alamin.

Wabillahhitaufiq walihidaiyah Wassalamualaikum Wr. Wb.




DAFTAR ISI

Kata pengantar............................................................................................................1

Daftar isi......................................................................................................................2

BAB 1..........................................................................................................................3

BAB II.........................................................................................................................4

BAB III........................................................................................................................12

BAB IV........................................................................................................................13

BAB V..........................................................................................................................15

Daftar pustaka...............................................................................................................17




BAB I Pendahuluan
1.1 Latar Belakang

Pada awalnya, energy listrik yang dihasilkan generator, tegangannya sangat tinggi. Sedangkan kita tahu bahwa pemakaian tegangan listrik untuk rumah tangga adalah rendah yaitu 110 volt atau 220 volt saja. Oleh karena itu, sebelum digunakan dirumah-rumah, energy listrik dari generator harus disesuaikan tegangannya caranya dengan menggunakan transformator atau trafo.

Transformator atau trafo merupakan salah satu alat yang memanfaatkan konsep induksi elektromagnetik. Prinsip kerja trafo adalah memindahkan energy listrik secara induksi melalui kumparan primer ke kumparan sekunder.


1.2 Tujuan

Agar siswa-siswi mengetahui manfaat, kegunaan serta penerapan dari induksi elektromagnetik:

• Pencetus induksi elektromagnetik.

• Prinsip kerja induksi elektromagnetik.

• Penerapan dalam kehidupan sehari-hari.

• Untuk mengetahui GGL induksi.

• Untuk mengetahui penyebab terjadinya GGL induksi.

• Manfaat dalam kehidupan sehari-hari.



BAB II Pembahasan

2.1 INDUKSI ELEKTROMAGNETIK

.Michael Faraday (1791-1867) seorang ilmuwan berkebangsaan Inggris, membuat hipotesis (dugaan) bahwa medan magnet seharusnya dapat menimbulkan arus listrik.
Berdasarkan percobaan, ditunjukkan bahwa gerakan magnet di dalam kumparan menyebabkan jarum galvanometer menyimpang.Jika kutub utara magnet digerakkan mendekati kumparan, jarum galvanometer menyimpang ke kanan.Jika magnet diam dalam kumparan, jarum galvanometer tidak menyimpang.

Jika kutub utara magnet digerakkan menjauhi kumparan, jarum galvanometer menyimpang ke kiri.Penyimpangan jarum galvanometer tersebut menunjukkan bahwa pada kedua ujung kumparan terdapat arus listrik.Peristiwa timbulnya arus listrik seperti itulah yang disebut induksi elektromagnetik. Adapun beda potensial yang timbul pada ujung kumparan disebut gaya gerak listrik (GGL) induksi.

Terjadinya GGL induksi dapat dijelaskan seperti berikut.Jika kutub utara magnet didekatkan ke kumparan. Jumlah garis gaya yang masuk kumparan makin banyak. Perubahan jumlah garis gaya itulah yang menyebabkan terjadinya penyimpangan jarum galvanometer.

Hal yang sama juga akan terjadi jika magnet digerakkan keluar dari kumparan. Akan tetapi, arah simpangan jarum galvanometer berlawanan dengan penyimpangan semula.Dengan demikian, dapat disimpulkan bahwa penyebab timbulnya GGL induksi adalah perubahan garis gaya magnet yang di lingkupi oleh kumparan.


2.2. PERCOBAAN FARADAY

Michael Faraday (1791-1867), seorang ilmuwan berkebangsaan Inggris, membuat hipotesis (dugaan) bahwa medan magnet seharusnya dapat menimbulkan arus listrik. Untuk membuktikan kebenaran hipotesis Faraday.

Berdasarkan percobaan, ditunjukkan bahwa gerakan magnet di dalam kumparan menyebabkan jarum galvanometer menyimpang. Jika kutub utara magnet digerakkan mendekati kumparan, jarum galvanometer menyimpang ke kanan. Jika magnet diam dalam kumparan, jarum galvanometer tidak menyimpang. Jika kutub utara magnet digerakkan menjauhi kumparan, jarum galvanometer menyimpang ke kiri. Penyimpangan jarum galvanometer tersebut menunjukkan bahwa pada kedua ujung kumparan terdapat arus listrik. Peristiwa timbulnya arus listrik seperti itulah yang disebut induksi elektromagnetik. Adapun beda potensial yang timbul pada ujung kumparan disebut gaya gerak listrik (GGL) induksi.

Terjadinya GGL induksi dapat dijelaskan seperti berikut. Jika kutub utara magnet didekatkan ke kumparan. Jumlah garis gaya yang masuk kumparan makin banyak. Perubahan jumlah garis gaya itulah yang menyebabkan terjadinya penyimpangan jarum galvanometer. Hal yang sama juga akan terjadi jika magnet digerakkan keluar dari kumparan. Akan tetapi, arah simpangan jarum galvanometer berlawanan dengan penyimpangan semula. Dengan demikian, dapat disimpulkan bahwa penyebab timbulnya GGL induksi adalah perubahan garis gaya magnet yang dilingkupi oleh kumparan.

Menurut Faraday, besar GGL induksi pada kedua ujung kumparan sebanding dengan laju perubahan fluks magnetik yang dilingkupi kumparan. Artinya, makin cepat terjadinya perubahan fluks magnetik, makin besar GGL induksi yang timbul. Adapun yang dimaksud fluks nmgnetik adalah banyaknya garis gaya magnet yang menembus suatu bidang.

GGL Kumparan

ε = − N (dφ/dt)

ε = − N (Δφ/Δt)

Contoh Soal :

Sebuah kumparan memiliki jumlah lilitan 1000 mengalami perubahan fluks magnetik dari 3 x 10−5 Wb menjadi 5 x 10− 5 Wb dalam selang waktu 10 ms. Tentukan ggl induksi yang timbul!



Pembahasan



Data dari soal :

Jumlah lilitan N = 1000

Selang waktu Δ t = 10 ms = 10 x 10−3 sekon

Selisih fluks Δ φ = 5 x 10− 5− 3 x 10− 5 = 2 x 10− 5 Wb



Hukum Lenz
Berdasarkan hukum Faraday, telah kita ketahui bahwa perubahan fluks magnetik akan menyebabkan timbulnya beda potensial antara ujung kumparan. Apabila kedua ujung kumparan itu dihubungkan dengan suatu penghantar yang memiliki hambatan tertentu akan mengalir arus yang disebut arus induksi dan beda potensial yang terjadi disebut ggl induksi. Faraday pada saat itu baru dapat menghitung besarnya ggl induksi yang terjadi, tetapi belum menentukan ke mana arah arus induksi yang timbul pada rangkaian/kumparan. Arah arus induksi yang terjadi baru dapat dijelaskan oleh Friederich Lenz pada tahun 1834 yang lebih dikenal dengan hukum Lenz.



Pernyataan Hukum Lenz

“Jika ggl induksi timbul pada suatu rangkaian, maka arah arus induksi yang dihasilkan sedemikian rupa sehingga menimbulkan medan magnetik induksi yang menentang perubahan medan magnetik (arus induksi berusaha mempertahankan fluks magnetik totalnya konstan)”

Arah arus induksi berdasarkan hukum Lenz (a) magnet mendekati kumparan, (b) magnet menjauhi kumparan.


Untuk lebih memahami hukum Lenz, perhatikan gambar diatas. Ketika kedudukan magnet dan kumparan diam, tidak ada perubahan fluks magnet dalam kumparan. Tetapi ketika kutub utara magnet digerakkan mendekati kumparan, maka timbul perubahan fluks magnetik. Dengan demikian pada kumparan akan timbul fluks magnetik yang menentang pertambahan fluks magnetik yang menembus kumparan. Oleh karena itu, arah fluks induksi harus berlawanan dengan fluks magnetik. Dengan demikian fluks total yang dilingkupi kumparan selalu konstan. Begitu juga pada saat magnet digerakkan menjauhi kumparan, maka akan terjadi pengurangan fluks magnetik dalam kumparan, akibatnya pada kumparan timbul fluks induksi yang menentang pengurangan fluks magnet, sehingga selalu fluks totalnya konstan. Arah arus induksi dapat ditentukan dengan aturan tangan kanan yaitu jika arah ibu jari menyatakan arah induksi magnet maka arah lipatan jari-jari yang lain menyatakan arah arus.


PENERAPAN INDUKSI ELEKTROMAGNETIK

Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik.Induksi elektromagnetik digunakan pada pembangkit energi listrik.Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo.Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan atau magnet yang berputar menyebabkan terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan perubahan tersebut menyebabkan terjadinya GGL induksi pada kumparan. Energi mekanik yang diberikan generator dan dinamo diubah ke dalam bentuk energi gerak rotasi. Hal itu menyebabkan GGL induksi dihasilkan secara terus-menerus dengan pola yang berulang secara periodik.

3.2Generator.

Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator DC memutar kumparan di dalam medan magnet tetap.Generator AC sering disebut alternator.Arus listrik yang dihasilkan berupa arus bolak-balik. Ciri generator (AC) menggunakan cincin ganda. Generator-generator arus DC, arus yang dihasilkan berupa arus searah.ciri generator DC menggunakan cincin belah (komutator). Jadi, generator AC dapat diubah menjadi generator DC dengan cara mengganti cincin ganda dengan sebuah komutator. Sebuah generator AC kumparan berputar di antara kutub- kutub yang tak sejenis dari dua magnet yang saling berhadapan. Kedua kutub magnet akan menimbulkan medan magnet. Kedua ujung kumparan dihubungkan dengan sikat karbon yang terdapat pada setiap cincin. Kumparan merupakan bagian generator yang berputar (bergerak) disebut rotor. Magnet tetap merupakan bagian generator yang tidak bergerak disebut stator.

12



Bagaimanakah generator bekerja? Ketika kumparan sejajar dengan arah medan magnet (membentuk sudut 0 derajat), belum terjadi arus listrik dan tidak terjadi GGL induksi (perhatikan Gambar 12.2). Pada saat kumparan berputar perlahan-lahan, arus dan GGL beranjak naik sampai kumparan membentuk sudut 90 derajat. Saat itu posisi kumparan tegak lurus dengan arah medan magnet. Pada kedudukan ini kuat arus dan GGL induksi menunjukkan nilai maksimum.Selanjutnya, putaran kumparan terus berputar, arus dan GGL makin berkurang. Ketika kumparan mem bentuk sudut 180 derajat kedudukan kumparan sejajar dengan arah medan magnet, maka GGL induksi dan arus induksi menjadi nol.



Putaran kumparan berikutnya arus dan tegangan mulai naik lagi dengan arah yang berlawanan. Pada saat membentuk sudut 270 derajat, terjadi lagi kumparan berarus tegak lurus dengan arah medan magnetPada kedudukan kuat arus dan GGL induksi menunjukkan nilai maksimum lagi, namun arahnya berbeda.Putaran kumparan selanjutnya, arus dan tegangan turun perlahanlahan hingga mencapai nol dan kumparan kembali ke posisi semula hingga memb entuk sudut 360 derajat.



3.3 PRINSIP KERJA GENERATOR

Bagian utama generator, lihat Gambar 13.4, adalah:

a. Magnet

Untuk generator pembangkit tenaga listrik yang besar biasanya menggunakan lebih dari satu magnet yang berputar.Magnet yang digunakan biasanya magnet listrik.

b. Rotor

Rotor adalah bagian generator yang berputar.

c. Stator

Stator adalah bagian generator yang tidak berputar.Arus yang ditimbulkan oleh generator juga arus bolak-balik.



Generator atau pembangkit listrik yang sederhana dapat ditemukan pada sepeda.Pada sepeda, biasanya dinamo digunakan untuk menyalakan lampu.Caranya ialah bagian atas dinamo (bagian yang dapat berputar) dihubungkan ke roda sepeda. Pada proses itulah terjadi perubalian energi gerak menjadi energi listrik. Generator (dinamo) merupakan alat yang prinsip kerjanya berdasarkan induksi elektromagnetik.Alat ini pertama kali ditemukan oleh Michael Faraday.
Berkebalikan dengan motor listrik, generator adalah mesin yang mengubah energi kinetik menjadi energi listrik.Energi kinetik pada generator dapat juga diperoleh dari angin atau air terjun.Berdasarkan arus yang dihasilkan.Generator dapat dibedakan menjadi dua rnacam, yaitu generator AC dan generator DC.Generator AC menghasilkan arus bolak-balik (AC) dan generator DC menghasilkan arus searah (DC).Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.



A. Generator AC

Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida).cincin geser, dan sikat. Pada generator.perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. OIeh karena itu, arus induksi yang ditimbulkan berupa arus AC.

Adanya arus AC ini ditunjukkan oleh menyalanya lampu pijar yang disusun seri dengan kedua sikat. Sebagaimana percobaan Faraday, GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:

memperbanyak lilitan kumparan,

menggunakan magnet permanen yang lebih kuat.

mempercepat perputaran kumparan, dan menyisipkan inti besi lunak ke dalam kumparan.

Contoh generator AC yang akan sering kita jumpai dalam kehidupan sehari-hari adalah dinamo sepeda. Bagian utama dinamo sepeda adalah sebuah magnet tetap dan kumparan yang disisipi besi lunak.Jika magnet tetap diputar, perputaran tersebut menimbulkan GGL induksi pada kumparan.Jika sebuah lampu pijar (lampu sepeda) dipasang pada kabel yang menghubungkan kedua ujung kumparan.lampu tersebut akan dilalui arus induksi AC. Akibatnya, lampu tersebut menyala. Nyala lampu akan makin terang jika perputaran magnet tetap makin cepat (laju sepeda makin kencang).



B. Generator DC

Prinsip kerja generator (dinamo) DC sama dengan generator AC. Namun, pada generator DC arah arus induksinya tidak berubah. Hal ini disebabkan cincin yang digunakan pada generator DC berupa cincin belah (komutator).



3.4Dinamo.

Dinamo dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu memutar kumparan di dalam medan magnet atau memutar magnet di dalam kumparan. Bagian dinamo yang berputar disebut rotor.Bagian dinamo yang tidak bergerak disebut stator.

Perbedaan antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan.Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua yang disebut cincin belah (komutator).Cincin ini memungkinkan arus listrik yang dihasilkan pada rangkaian luar Dinamo berupa arus searah walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik.Adapun, pada dinamo arus bolak-balik menggunakan cincin ganda (dua cincin).Alat pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo sepeda.

Tenaga yang digunakan untuk memutar rotoradalah roda sepeda.Jika roda berputar, kumparan atau magnet ikut berputar.Akibatnya, timbul GGL induksi pada ujung-ujung kumparan dan arus listrik mengalir.Makin cepat gerakan roda sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL induksi dan arus listrik yang dihasilkan. Jika dihubungkan dengan lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi lunak di dalam kumparan.

3.5 PRINSIP KERJA DINAMO

1. Dinamo

Bagian utama dinamo, lihat Gambar 13.2, adalah
a. Sebuah kumparan (C)
b. Sebuah cincin geser (A)
c. Sikat (B)
d. Magnet

Sedangkan langkah-langkah kerja dinamo adalah sebagai berikut:
a. Sebuah kumparan berputar dalam medan magnet.
b. Tiap-tiap ujung kawat kumparan dihubungkan dengan sebuah “cincin geser”.
c. Cincin geser tersebut menempel sebuah sikat.
d. Bila kumparan diputar maka dalam kumparan itu timbul GGL AC. GGL AC ini menimbulkan arus AC di dalam rangkaian dinamo.

2. Dinamo Arus Searah

Dinamo arus bolak-balik dapat diubah menjadi dinamo arus searah dengan menggunakan cincin belah atau komutator seperti pada motor listrik, lihat gambar 13.3!

Dinamo arus searah pada prinsipnya sama dengan motor arus searah. Jadi dinamo arus searah dapat dipakai sebagai motor arus searah. Demikian pula sebaliknya.



3.6 TRANSFORMATOR

Di rumah mungkin kamu pernah dihadapkan persoalan tegangan listrik, ketika kamu akan menghidupkan radio yang memerlukan tegangan 6 V atau 12 V. Padahal tegangan listrik yang disediakan PLN 220 V. Bahkan generator pembangkit listrik menghasilkan tegangan listrik yang sangat tinggi mencapai hingga puluhan ribu volt. Kenyataannya sampai di rumah tegangan listrik tinggal 220 V. Bagaimanakah cara mengubah tegangan listrik? Alat yang digunakan untuk menaikkan atau menurunkan tegangan AC disebut transformator (trafo). Trafo memiliki dua terminal, yaitu terminal input dan terminal output.

Terminal input terdapat pada kumparan primer. Terminal output terdapat pada kumparan sekunder. Tegangan listrik yang akan diubah dihubungkan dengan terminal input. Adapun, hasil pengubahan tegangan diperoleh pada terminal output.Prinsip kerja transformator menerapkan peristiwa induksi elektromagnetik. Jika pada kumparan primer dialiri arus AC, inti besi yang dililiti kumparan akan menjadi magnet (elektromagnet). Karena arus AC, pada elektromagnet selalu terjadi perubahan garis gaya magnet. Perubahan garis gaya tersebut akan bergeser ke kumparan sekunder. Dengan demikian, pada kumparan sekunder juga terjadi perubahan garis gaya magnet. Hal itulah yang menimbulkan GGL induksi pada kumparan sekunder.Adapun, arus induksi yang dihasilkan adalah arus AC yang besarnya sesuai dengan jumlah lilitan sekunder.



Bagian utama transformator ada tiga, yaitu inti besi yang berlapis-lapis, kumparan primer, dan kumparan sekunder. Kumparan primer yang dihubungkan dengan PLN sebagai tegangan masukan (input) yang akan dinaikkan atau diturunkan. Kumparan sekunder dihubungkan dengan beban sebagai tegangan keluaran (output).

3.7 Macam-Macam Transformator

Apabila tegangan terminal output lebih besar daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output lebih kecil daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penurun tegangan. Dengan demikian, transformator (trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.
Trafo step up adalah transformator yang berfungsi untuk menaikkan teganganAC.

Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder,
b. tegangan primer lebih kecil daripada tegangan sekunder,
c. kuat arus primer lebih besar daripada kuat arus sekunder.
Trafo step down adalah transformator yang berfungsi untuk menurunkan tegangan AC. Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder.

b. tegangan primer lebih besar daripada tegangan sekunder,
c. kuat arus primer lebih kecil daripada kuat arus sekunder.

B.Transformator Ideal

Besar tegangan dan kuat arus pada trafo bergantung banyaknya lilitan. Besar tegangan sebanding dengan jumlah lilitan. Makin banyak jumlah lilitan tegangan yang dihasilkan makin besar. Hal ini berlaku untuk lilitan primer dan sekunder. Hubungan antara jumlah lilitan primer dan sekunder dengan tegangan primer dan tegangan sekunder dirumuskan







Trafo dikatakan ideal jika tidak ada energi yang hilang menjadi kalor, yaitu ketika jumlah energi yang masuk pada kumparan primer sama dengan jumlah energi yang keluar pada kumparan sekunder. Hubungan antara tegangan dengan kuat arus pada kumparan primer dan sekunder dirumuskan





Jika kedua ruas dibagi dengan t, diperoleh rumus







Dalam hal ini faktor (V × I) adalah daya (P) transformator. Berdasarkan rumus-rumus di atas, hubungan antara jumlah lilitan primer dan sekunder dengan kuat arus primer dan sekunder dapat dirumuskan sebagai







Dengan demikian untuk transformator ideal akan berlaku persamaan berikut.







Dengan:



Vp = tegangan primer (V)



Vs = tegangan sekunder (V)



Np = jumlah lilitan primer



Ns = jumlah lilitan sekunder



Ip = kuat arus primer (A)



Is = kuat arus sekunder (A)



Contoh Soal



Perbandingan lilitan primer dengan lilitan sekunder sebuah transformator adalah 4:10. Jika kuat arus primer 5 ampere, berapakah kuat arus sekunder?



Penyelesaian:

Diketahui:

NP : NS = 4 : 10,

IP= 5 A.

Ditanyakan: IS = ?

Jawab:

IS = (NP / NS) x IP

IS = (4/10) x 5

IS = 2 A

Jadi kuat arus sekundernya 2 Ampere.



C.EfisiensiTransformator
pada kenyataannya trafo tidak pernah ideal. Jika trafo digunakan, selalu timbul energi kalor.Dengan demikian, energi listrik yang masuk pada kumparan primer selalu lebih besar daripada energi yang keluar pada kumparan sekunder.Akibatnya, daya primer lebih besar daripada daya sekunder.Berkurangnya daya dan energi listrik pada sebuah trafo ditentukan oleh besarnya efisiensi trafo.Perbandingan antara daya sekunder dengan daya primer atau hasil bagi antara energi sekunder dengan energi primer yang dinyatakan dengan persen disebut efisiensi trafo. Efisiensi trafo dinyatakan dengan η .Besar efisiensi trafo dapat dirumuskan sebagai berikut.

D.Penerapan transformator

Salah satu contoh penggunaan transformator adalah pada pesawat penerima radio jenis “tabung”.















BAB III

PENUTUP

4.1 KESIMPULAN

Timbulnya gaya listrik (GGL) pada kumparan hanya apabila terjadi perubahan jumlah garis-garis gaya magnet.Gaya gerak listrik yang timbul akibat adanya perubahan jumlah garis-garis gaya magnet disebut GGL induksi, sedangkan arus yang mengalir dinamakan arus induksi dan peristiwanya disebut induksi elektromagnetik. Ada beberapa faktor yang mempengaruhi besar GGL induksi yaitu:



1. Kecepatan perubahan medan magnet. Semakin cepat perubahan medan magnet, maka GGL

induksi yang timbul semakin besar.

2. Banyaknya lilitan Semakin banyak lilitannya, maka GGL induksi yang timbul juga semakin

besar.
3. Kekuatan magnet Semakin kuat gelaja kemagnetannya, maka GGL induksi yang timbul juga semakin besar.



Untuk memperkuat gejala kemagnetan pada kumparan dapat dengan jalan memasukkan inti besi lunak. GGL induksi dapat ditimbulkan dengan cara lain yaitu:
1. Memutar magnet di dekat kumparan atau memutar kumparan di dekat magnet. Maka kedua ujung kumparan akan timbul GGL induksi.
2. Memutus-mutus atau mengubah-ubah arah arus searah pada kumparan primer yang di dekatnya terletak kumparan sekunder maka kedua ujung kumparan sekunder dapat timbul GGL induksi.
3. Mengalirkan arus AC pada kumparan primer, maka kumparan sekunder didekatkan dapat timbul GGL induksi. Arus induksi yang timbul
adalah arus AC dan gaya gerak listrik induksi adalah GGL AC.





































BAB IV

SOAL LATIHAN

I.PILIHAN GANDA:

1.Prinsip kerja generator dapat dianggap sebagai kebalikan dengan ....A. galvanometer B. transformator C. motor listrik D. elektromagnetik

2.Jika garis gaya magnet yang memotong kawat diperkecil, arus induksi akan menjadi ....A. tetapB. tidak dapat diperkirakanC. naik D. turun

3.Alat yang mengubah besar tegangan bolak-balik adalah ....A. galvanometer B. transformator C. motor listrik D. elektromagnetik

4.Menghasilkan arus listrik dengan menggerakkan kawat melalui medan magnet adalah ....A. kemagnetanB. transmisi teganganC. induksi elektromagnetik D. elektromagnetik

5.Alat yang mengubah energi mekanis menjadi energi listrik adalah ....A. galvanometer B. transformator C. motor listrik D. generator

6.Roda besar yang memperoleh energi dari berbagai macam sumber dan memberi energi mekaniske generator adalah ....A. generator B. transformator C. motor listrik D. turbin

7.Sebuah transformator yang menurunkan tegangan adalah ....A. transformator hambatanB. transformator step-downC. transformator step-upD. motor tegangan

8.Pada transformator step-down, jumlah lilitan kawat lebih banyak di kumparan ... daripada dikumparan ..., dan tegangan ... lebih besar daripada tegangan ....A. sekunder,primer,input,outputB. sekunder,primer,output,inputC. primer,sekunder,input,outputD. primer,sekunder,output,input

9.Sebelum tegangan pada jala-jala listrik memasuki rumahmu, ia harus melewati ....A. transformator step-upB. transformator step-downC. komutator D. voltmeter



II.SOAL ESSAY

Soal No. 1

Kawat PQ panjang 50 cm digerakkan tegak lurus sepanjang kawat AB memotong medan magnetik serba sama 0,02 Tesla seperti pada gambar.



Tentukan :

a) besar ggl induksi

b) kuat arus yang mengalir pada kawat PQ

c) arah kuat arus pada kawat PQ

d) potensial yang lebih tinggi antara titik P dan Q

e) besar gaya Lorentz pada PQ

f) arah gaya Lorentz pada PQ

g) daya yang diserap hambatan R = 0,02 Ω

(Sumber gambar dan angka : Soal UN Fisika 2008)

Soal No. 2

Sebuah kumparan memiliki jumlah lilitan 1000 mengalami perubahan fluks magnetik dari 3 x 10−5 Wb menjadi 5 x 10− 5 Wb dalam selang waktu 10 ms. Tentukan ggl induksi yang timbul!

Soal No. 3

Kumparan dengan 10 lilitan mengalami perubahan fluks magnetik dengan persamaan:

φ = 0,02 t3 + 0, 4 t2 + 5

dengan φ dalam satuan Weber dan t dalam satuan sekon. Tentukan besar ggl induksi saat t = 1 sekon!

Soal No. 4

Sebuah generator listrik AC menghasilkan tegangan sesuai persamaan berikut:





Tentukan:

a) Frekuensi sumber listrik

b) Tegangan maksimum yang dihasilkan

c) Nilai tegangan efektif sumber

Soal No. 5

Sebuah kumparan dengan induktansi 5 mH mengalami perubahan kuat arus yang mengalir dari 0,2 A menjadi 1,0 A dalam waktu 0,01 sekon. Tentukan besarnya tegangan yang timbul akibat peristiwa tersebut!























































BAB V

KUNCI JAWABAN

PG:

1.A,2.C,3.A,4.D,5.C,6.D,7.A,8.A,9.B,10.B

ESSAY:

1. a) besar ggl induksi



b) kuat arus yang mengalir pada kawat PQ



c) arah kuat arus pada kawat PQ
Kaidah tangan kanan untuk arah arus induksi :
- 4 jari = arah medan magnetik (B)
- ibu jari = arah gerak kawat (v)
- telapak tangan = arah arus induksi (i)



Arah arus dari P ke Q ( atau dari Q ke P melalui hambatan R)

d) potensial yang lebih tinggi antara titik P dan Q
Potensial P lebih tinggi dari Q karena arus listrik mengalir dari potensial lebih tinggi ke rendah.

e) besar gaya Lorentz pada PQ



f) arah gaya Lorentz pada PQ

Kaidah tangan kanan untuk menentukan arah gaya Lorentz (gaya magnetik) :
- 4 jari = arah kuat medan maganet (B)
- ibu jari = arah arus listrik (i)
- telapak tangan = arah gaya (F)
Arah gaya F ke kiri (berlawanan dengan arah gerak v)

g) daya yang diserap hambatan R = 0,02 Ω





2.Data dari soal :
Jumlah lilitan N = 1000
Selang waktu Δ t = 10 ms = 10 x 10−3 sekon
Selisih fluks Δ φ = 5 x 10− 5− 3 x 10− 5 = 2 x 10− 5 Wb





3.




4.a) Frekuensi sumber listrik



b) Tegangan maksimum yang dihasilkan



c) Nilai tegangan efektif sumber



5.Data dari soal :
Induktansi kumparan L = 5 mH = 5 x 10−3 H
Perubahan arus Δ i = 1,0 − 0,2 = 0,8 ASelang waktu Δ t = 0,01 sekon



DAFTAR PUSTAKA

http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_x/potensial-elektroda-dan-hukum-faraday/

http://dunia-listrik.blogspot.com/2009/04/hukum-hukum-dasar-listrik.html

www.google.com

























































































MODUL INDUKSI ELEKTROMAGNETIK


























































Tidak ada komentar:

Posting Komentar